Loading [MathJax]/jax/output/CommonHTML/jax.js

তরঙ্গ ও শব্দ (অধ্যায় ৯)

একাদশ- দ্বাদশ শ্রেণি - পদার্থবিদ্যা পদার্থবিজ্ঞান – ১ম পত্র | - | NCTB BOOK
2.9k
2.9k

সূচনা

Introduction

তরঙ্গ ও তরঙ্গ-গতি পদার্থবিজ্ঞানের একটি গুরুত্বপূর্ণ বিষয়। সব ধরনের তরঙ্গের ক্ষেত্রে দুটি বৈশিষ্ট্য লক্ষ করা যায়। প্রথমত, তরঙ্গ চলনক্ষম আলোড়ন বা আন্দোলন এবং দ্বিতীয়ত তরঙ্গ একস্থান হতে অন্যস্থানে শক্তি সঞ্চালন করে। আমরা যে শব্দ শুনি বা আলো দেখি তা তরঙ্গ আকারে উৎস থেকে আমাদের কাছে পৌঁছায়। কাজেই তরঙ্গ প্রকৃতি এবং তরঙ্গ গতি সম্পর্কে আমাদের স্পষ্ট ধারণা থাকা প্রয়োজন। এই অধ্যায়ে তরঙ্গের বিভিন্ন বৈশিষ্ট্য এবং শব্দতরঙ্গ আলোচনা করব।

১৭'২ তরঙ্গ ও তরঙ্গ গতি

Wave and wave motion

একটি পুকুরের স্থির পানিতে ঢিল ছুড়লে তরঙ্গের সৃষ্টি হয়। ঢিলটি যে বিন্দুতে পানিতে প্রবেশ করে সে বিন্দুকে কেন্দ্র করে পানির উপরিপৃষ্ঠে সারি সারি তরঙ্গ ক্রমবর্ধমান বৃত্তাকারে চারদিকে ছড়িয়ে পড়ে। এর ফলে পানির উপরিতলে একস্থান হতে অন্যস্থানে শক্তির সঞ্চালন ঘটে। পানির উপরে একটি শোলা বা পাটকাঠি থাকলে দেখা যাবে যে শোলা বা কাঠিটি একই স্থানে থেকে উপরে-নিচে উঠানামা করছে। এর অর্থ হল মাধ্যমের কণাগুলো স্থান ত্যাগ করে না, যদি করত তবে শোনা বা কাঠিটি সরে পাড়ে চলে আসত। মাধ্যমের কণাগুলোর মধ্যে সংযুক্তি বলের কারণে এগুলো স্থান ত্যাগ করে না, তবে আন্দোলনের দ্বারা পার্শ্ববর্তী কণাগুলোতে শক্তি সঞ্চালিত হয় এবং পাশের কণাগুলো আন্দোলিত হয়। এভাবে শক্তি তরঙ্গাকারে একস্থান হতে অন্যস্থানে সঞ্চালিত হয়। সুতরাং, তরঙ্গের নিম্নরূপ সংজ্ঞা দেয়া যায় :

সংজ্ঞা : কোন স্থিতিস্থাপক মাধ্যমের কণাগুলোর স্থানান্তর ছাড়া যে পর্যাবৃত্ত আন্দোলনের দ্বারা একস্থান হতে অন্যস্থানে শক্তি সঞ্চালিত হয় তাকে তরঙ্গ বলে।

যে সব তরঙ্গ সঞ্চালনের জন্য মাধ্যমের প্রয়োজন হয় সেগুলোকে যান্ত্রিক তরঙ্গ বলে। শব্দতরঙ্গ, টানা তারে সৃষ্ট তুরঙ্গ ইত্যাদি যান্ত্রিক তরঙ্গের উদাহরণ।

মাধ্যম ছাড়াও তরঙ্গ সঞ্চালিত হতে পারে। সূর্য থেকে আমরা যে আলো পাই তা কোন মাধ্যম ছাড়াই চলাচল করে। এদেরকে তড়িচ্চুম্বকীয় তরঙ্গ বলে। তড়িৎ ও চৌম্বক ক্ষেত্রের পর্যাবৃত্ত গতি পরিবর্তনের ফলে তড়িচ্চুম্বকীয় তরঙ্গের উৎপত্তি হয়।

Content added By

# বহুনির্বাচনী প্রশ্ন

কোন বাতাস নাই
চন্দ্রের নিজস্ব কোন আলো নাই
চন্দ্রে কোন অক্সিজেন নাই
চন্দ্রে কোন প্রতিবন্ধকতা নাই

তরঙ্গ ও শক্তি

878
878

কম্পনশীল বস্তুর আঘাতে এর সংলগ্ন মাধ্যমের কণা নিজ মধ্য অবস্থানের দুদিকে এদিক-ওদিক (to and fro) সরল দোলন গতিতে কাপতে থাকে। ঐসব বায়ুকণা তাদের পাশের কণাকে একই জাতীয় কম্পনে কম্পিত করে। এভাবেই পরপর কণা থেকে কণাতে কম্পন স্থানান্তর হতে থাকে, অর্থাৎ শব্দ উৎস থেকে তরঙ্গ বিস্তারের অভিমুখে কম্পনরত কণার একটি শৃঙ্খল তৈরি হয় এবং শেষ পর্যন্ত শ্রোতার কানে কম্পন আঘাত করে। সুতরাং শব্দ উৎস হতে প্রাপ্ত শক্তি কণা থেকে কণাতে স্থানান্তরিত হয়ে অবশেষে শ্রোতার কানে পৌঁছায়; কিন্তু কোনো স্থিতিস্থাপক মাধ্যমের কণাগুলোর স্থানান্তর ছাড়া যে পর্যাবৃত্ত আন্দোলনের দ্বারা এক স্থান মাধ্যমের কণার কোনো স্থায়ী স্থানচ্যুতি ঘটে না।

জড় মাধ্যমের ভেতর দিয়ে তরঙ্গের বিস্তারের সময় মাধ্যমের কণাগুলি আন্দোলিত হয়, ফলে শক্তির স্থানান্তর ঘটে। ঐ শক্তির কিছু অংশ গতিশক্তি ও বাকী অংশ স্থিতিশক্তি, যদিও মোট শক্তি সর্বত্র সমান। তরঙ্গ মাধ্যমের মধ্য দিয়ে সঞ্চালিত হলে মাধ্যমের কণাগুলো সরল দোলন গতি লাভ করে [চিত্র ১.৪]। শক্তি সঞ্চালনে কণাগুলো সরাসরি ভূমিকা পালন করে না এবং কণাগুলো স্থায়ীভাবে স্থানচ্যুতও হয় না। পক্ষান্তরে তরা সঞ্চালনে মাধ্যমের প্রয়োজন না হলে শক্তি স্থানান্তরে কণার কোনো ভূমিকাই থাকে না। পানির উপর একটি শোলা বা পাটকাঠি থাকলে দেখা যাবে যে, শোলা বা কাঠিটি একই স্থানে থেকে উপরে-নিচে উঠানামা করছে। এর অর্থ হলো মাধ্যমের কণাগুলো স্থান ত্যাগ করে না, যদি করত তবে শোলা বা কাঠিটি সরে পাড়ে চলে আসত। মাধ্যমের কণাগুলোর মধ্যে সংসক্তি বলের কারণে এগুলো স্থান ত্যাগ করে না; তবে আন্দোলনের দ্বারা পার্শ্ববর্তী কণাগুলোতে শক্তি সঞ্চালিত হয় বলে পাশের কণাগুলো আন্দোলিত হয়। এভাবে শক্তি তরঙ্গাকারে এক স্থান হতে অন্য স্থানে সঞ্চালিত হয়। সুতরাং তরঙ্গের নিম্নরূপ সংজ্ঞা দেয়া যায় :

কোনো স্থিতিস্থাপক মাধ্যমের কণাগুলোর স্থানান্তর ছাড়া যে পর্যাবৃত্ত আন্দোলনের দ্বারা এক স্থান হতে অন্য স্থানে শক্তি সঞ্চালিত হয় তাকে তরঙ্গ বলে। তরঙ্গ শক্তির এক প্রকার রূপ তাই পানিতে ডিল নিক্ষেপের সময় হাত থেকে শক্তি ঢিলে স্থানান্তরিত হয়। আবার যখন টানা দেয়া তারে একটি তরঙ্গকে স্থাপন করা হয় তখন প্রকৃতপক্ষে তারে তরঙ্গ সঞ্চালনের জন্য শক্তি সরবরাহ করা হয়। সুতরাং দেখা যায় যে, মাধ্যমে আন্দোলনের ফলে মাধ্যমের কণাসমূহে যে যান্ত্রিক শক্তির সৃষ্টি হয়। তা কম্পনের মাধ্যমে এক স্থান হতে অন্য স্থানে সঞ্চালিত হয়। তরঙ্গ দ্বারা শক্তি এক স্থান থেকে অন্য স্থানে সঞ্চালিত হয়। এই তরঙ্গ এক স্থান থেকে অন্য স্থানে চলাচলের সময় গতিশক্তি ও স্থিতিস্থাপক স্থিতিশক্তি স্থানান্তরিত হয়।

গতিশক্তি (Kinetic energy):

 মনে করি তারের একটি কণার ভর dm, যা আড় তরঙ্গরূপে সরল ছন্দিত গতিতে কম্পিত হচ্ছে। যখন তরঙ্গ এই কণাকে অতিক্রম করে তখন তা গতিশক্তি প্রাপ্ত হয় যার বেগ v।  y = 0 অবস্থানে কণার অবস্থানের জন্য আড় কম্পনের বেগ তথা গতিশক্তি সর্বাধিক হয় [চিত্র ৯.৪]। আবার কণাটির চূড়ান্ত অবস্থান y = ym অবস্থানে আড় কম্পনের বেগ তথা গতিশক্তি শূন্য বা সর্বনিম্ন হয়।

স্থিতিস্থাপক স্থিতিশক্তি (Elastic potential energy) : 

এখন একটি সাইন তরঙ্গ পূর্বের টানা তারে সঞ্চালনের জন্য প্রয়োগ করা হলে তা তারটিতে চাপ (stretch) প্রয়োগ করে। (১-৪) চিত্র অনুযায়ী ধরি তারের ক্ষুদ্র dx অংশ আড়াআড়িভাবে কম্পিত হচ্ছে; কাজেই এই দৈর্ঘ্য dx বরাবর পর্যায়ক্রমিকভাবে সংকুচিত ও প্রসারিত হয়।

সেক্ষেত্রে বলা যায় তারটি স্থিতিস্থাপক স্থিতিশক্তি লাভ করার জন্য দৈর্ঘ্য পরিবর্তিত হচ্ছে যেমনটি লক্ষ করা যা একটি স্প্রিং এর ক্ষেত্রে। যখন তারে কণার অবস্থান y = ym হয় তখন ক্ষুদ্রতম দৈর্ঘ্য dx অপরিবর্তিত থাকে এবং এই অবস্থানে স্থিতিস্থাপক স্থিতিশক্তি শূন্য হয়। আবার y = 0 অবস্থানে স্থিতিস্থাপক স্থিতিশক্তি সর্বাধিক হয়। এভাবে কম্পিত তার গতিশক্তি ও স্থিতিশক্তি লাভ করে।

আমরা যখন কথা বলি তখন উৎপন্ন শব্দ তরঙ্গ আকারে ছড়িয়ে পড়ে। প্রকৃতপক্ষে, একটি শব্দসৃষ্টিকারী উৎসের কম্পনে পর্যায়ক্রমে মাধ্যমে সংকোচন ও প্রসারণ সৃষ্টি হয় এবং তরঙ্গ সমবেগে চারদিকে ছড়িয়ে যায়। একটি পূর্ণ কম্পনকালের মধ্যে মাধ্যমের কোনো কণার সরণ-সময় লেখচিত্র কিংবা তরঙ্গের বিস্তারের অভিমুখে নির্দিষ্ট সময় বিভিন্ন কণার সরণ-দূরত্ব লেখচিত্র অঙ্কন করলে লেখচিত্রগুলি তরঙ্গ আকারের হবে।

Content added || updated By

# বহুনির্বাচনী প্রশ্ন

λ
λ2
λ4
525000m-1
625000m-1
725000m-1
825000m-1
nλ
(2n-1)λ
(2n÷1)λ2
(2n÷1)λ
2nπ
(2n+1)π
2nπ এবং (2n+1)π
কোনটিই নয়

তরঙ্গের প্রকারভেদ

2k
2k

মাধ্যমের কণাগুলো সরল দোল গতিতে কম্পিত হলে যে তরঙ্গের সৃষ্টি হয় তাকে সরল দোল তরঙ্গ (Simple harmonic wave) বা সাইন তরঙ্গ (Sine wave) বলে। সরল দোল তরঙ্গ আবার দুই প্রকারের। যথা—

(১) আড় তরঙ্গ বা অনুপ্রস্থ তরঙ্গ (Transverse waves) এবং 

(২) লম্বিক তরঙ্গ বা অনুদৈর্ঘ্য তরঙ্গ (Longitudinal waves)। 

(১) আড় তরঙ্গ বা অনুপ্রস্থ তরঙ্গ : মাধ্যমের কণাগুলো তরঙ্গ গতির অভিমুখের সমকোণে কম্পিত হতে থাকলে সেই তরঙ্গকে আড় তরঙ্গ বা অনুপ্রস্থ তরঙ্গ বলে।

ব্যাখ্যা : চিত্র ১৭.১-এ একটি অনুপ্রস্থ তরঙ্গ দেখান হয়েছে। তরঙ্গের উপর ছোট ছোট তাঁর চিহ্ন দ্বারা কণার কম্পনের অভিমুখ দেখান হয়েছে। তরঙ্গের উপরের দিকে A ও E বিন্দুতে কণার সর্বোচ্চ সরণ ঘটেছে। তরঙ্গের এই বিন্দুগুলোকে তরঙ্গ শীর্ষ বা তরঙ্গ চূড়া (crest) বলে। আবার নিচের দিকে C বিন্দুতে সর্বোচ্চ সরণ ঘটেছে। একে তরঙ্গ পাদ বা তরঙ্গ খাঁজ (Trough) বলে।

চিত্র : ১৭.১

এক্ষেত্রে কণার স্পন্দনের অভিমুখ তরঙ্গ প্রবাহের অভিমুখের সমকোণে ঘটেছে। অতএব এটা আড় তরঙ্গ।

উদাহরণ:

 (১) পুকুরের পানিতে ঢিল ছুঁড়লে দেখা যায় যে পানির কণাগুলো উপরে-নিচে দুলতে থাকে এবং এই আন্দোলন কিনারার দিকে অগ্রসর হতে থাকে। সৃষ্ট এরূপ আন্দোলনই আড় তরঙ্গ বা অনুপ্রস্থ তরঙ্গ।

 (২) একটি তার টান করে বেঁধে এর দৈর্ঘ্যের সমকোণে টেনে ছেড়ে দিলে তারে একটি তরঙ্গের সৃষ্টি হবে [চিত্র ১৭.২ ]। লক্ষ করলে দেখা যাবে যে, তারটি এর দৈর্ঘ্যের সাথে সমকোণে আন্দোলিত হচ্ছে। এই আন্দোলন তারের দৈর্ঘ্য বরাবর প্রবাহিত হচ্ছে। সুতরাং টানা তারের এরূপ কম্পন হতে স্পষ্ট যে, এই তরঙ্গ আড় তরঙ্গ।

চিত্র : ১৭.২

আড় তরঙ্গ প্রদর্শন (Demonstration of Transverse wave ) : 

পরীক্ষায় সমান দৈর্ঘ্যের কতকগুলো দণ্ড নেয়া হয় যাদের প্রত্যেকের এক মাথায় একটি করে বল এবং অপর মাথায় একটি করে চাকা যুক্ত আছে [ চিত্র ১৭.৩]। চাকাগুলো একটি হাতলযুক্ত ঘূর্ণনক্ষম দণ্ডের সাথে এমনভাবে লাগানো আছে যে চাকাগুলো কম-বেশি উৎকেন্দ্রিক (eccentric) অবস্থায় থাকে অর্থাৎ দণ্ডগুলো এক এক চাকার এক এক স্থান দিয়ে পরানো থাকে এবং দণ্ডগুলো খাড়াভাবে অবস্থান করে। হাতল ঘুরালে চাকাগুলোও ঘুরতে থাকে এবং দণ্ডগুলো উঠা-নামা করে। চাকাগুলো কম-বেশি উৎকেন্দ্রিক হওয়ায় বিভিন্ন দণ্ডের উপরের প্রান্তের বলগুলো একসঙ্গে উপরে উঠে না বা নিচে নামে না— পর্যায়ক্রমে উঠা-নামা করে। ভালভাবে লক্ষ করলে দেখা যাবে যে বলগুলো যে দিকে উঠা-নামা করে তার সমকোণে তরঙ্গ প্রবাহিত হচ্ছে। সুতরাং এস্থলে উদ্ভূত তরঙ্গ আড় তরঙ্গ।

চিত্র :১৭.৩

 

Content added || updated By

আড় তরঙ্গ

237
237
Please, contribute by adding content to আড় তরঙ্গ.
Content

লম্বিক তরঙ্গ

724
724

(২) লম্বিক তরঙ্গ বা অনুদৈর্ঘ্য তরঙ্গ : মাধ্যমের কণাগুলো তরঙ্গের গতির অভিমুখের সমান্তরালে কম্পিত হতে থাকলে, সেই তরঙ্গকে লম্বিক বা অনুদৈর্ঘ্য তরঙ্গ বলে। 

ব্যাখ্যা : 

চিত্র ১৭.৪-এ অনুদৈর্ঘ্য তরঙ্গ প্রবাহ দেখান হয়েছে। মাধ্যমের বিভিন্ন স্তরের সাম্যাবস্থান কতগুলো সমান দূরত্বের রেখা দ্বারা নির্দেশ করা হয়েছে [চিত্র ১৭.৪ (ক)]।

চিত্র : ১৭.৪

মাধ্যমের ভেতর দিয়ে লম্বিক তরঙ্গ প্রবাহিত হতে থাকলে যে কোন সময়ে স্তরগুলোর অবস্থান কিরূপ হবে তা ১৭.৪ (খ) চিত্রে দেখান হয়েছে। অনুদৈর্ঘ্য তরঙ্গের ক্ষেত্রে মাধ্যমের কণাগুলো সাম্যাবস্থানের উভয় পার্শ্বে তরঙ্গের গতিপথের সমান্তরালে কম্পিত হয়, ফলে তরঙ্গশীর্ষ বা তরঙ্গপাদ সৃষ্টি হয় না। এক্ষেত্রে কম্পনের সময় কিছু কিছু স্থানে কণাগুলো কাছাকাছি চলে আসে আবার কোথাও দূরে সরে যায়। কণাগুলো কাছাকাছি আসায় মাধ্যমের সংকোচন বা ঘনীভবন (compression or condensation) হয় এবং কণাগুলো সরে গেলে মাধ্যমের প্রসারণ (rarefaction) হয়। চিত্রে রেখাগুলোর মধ্যবর্তী দূরত্ব কম দ্বারা সংকোচন এবং রেখাগুলোর দূরত্ব বৃদ্ধি দ্বারা সম্প্রসারণ বুঝান হয়েছে। সংকোচনের স্থানগুলোতে মাধ্যমের ঘনত্ব ও চাপ বেড়ে যায় এবং প্রসারণের স্থানগুলোতে মাধ্যমের ঘনত্ব ও চাপ কমে যায়। এভাবে মাধ্যমের কণাগুলোর সংকোচন ও প্রসারণের মধ্য দিয়ে অনুদৈর্ঘ্য ও লম্বিক তরঙ্গ সঞ্চালিত হয়। পাশাপাশি একটি সংকোচন ও একটি প্রসারণ নিয়ে একটি তরঙ্গদৈর্ঘ্য গঠিত হয়।

উদাহরণ :

(১) কথা বলার সময় আমরা জিহ্বার সাহায্যে মুখের মধ্যকার বায়ু কণাতে কম্পন সৃষ্টি করি। বায়ুকণাগুলোর কম্পনের দিক শব্দ তরঙ্গের গতির অভিমুখে সংঘটিত হয়। অতএব শব্দ লম্বিক তরঙ্গ। বক্তা বা গায়কের মুখ হতে শব্দ বায়ু মাধ্যমে সঙ্কোচন ও প্রসারণ সৃষ্টি করে লম্বিক তরঙ্গের আকারে শ্রোতার কানে পৌঁছায়। [ চিত্র ১৭.৪ ]।

(২) একটি স্প্রিং খাড়াভাবে ঝুলিয়ে দিয়ে এর নিচের প্রান্ত খানিকটা নিচের দিকে টেনে ছেড়ে দিলে দেখা যাবে যে স্প্রিং-এর কুণ্ডলী পর্যায়ক্রমে সংকুচিত ও প্রসারিত হতে থাকে । চিত্র ১৭.৫ ] এবং এই স্পন্দন তারের দৈর্ঘ্য বরাবর প্রবাহিত হয় । অর্থাৎ, কুণ্ডলীগুলো সরল দোলন গতিতে তরঙ্গের গতির সমান্তরালে আন্দোলিত হচ্ছে। সুতরাং স্প্রিং-এ সৃষ্ট এই তরঙ্গ লম্বিক তরঙ্গ।

চিত্র : ১৭.৫

লম্বিক বা অনুদৈর্ঘ্য তরঙ্গ প্রদর্শন (Demonstration of longitudinal wave) : 

পরীক্ষায় একটি সরু তারের স্প্রিং নিয়ে এর প্রত্যেক কুণ্ডলীকে দুটি অনুভূমিক দণ্ড CD ও CD' হতে V আকারে সিল্ক সুতা দ্বারা এমনভাবে ঝুলানো হয় যে, তারটি অনুভূমিক থাকে | চিত্র ১৭.৬]।

চিত্র :১৭.৬

  এই স্প্রিং-এর এক প্রান্ত ধরে হঠাৎ অনুভূমিকভাবে ধাক্কা দিলে দেখা যাবে যে, তারের কুণ্ডলীগুলো পর্যায়ক্রমে সঙ্কুচিত ও প্রসারিত হচ্ছে এবং এই স্পন্দন ক্রমে ক্রমে তার বরাবর এগিয়ে যাচ্ছে। অর্থাৎ কুণ্ডলীগুলো তরঙ্গ প্রবাহের দিকেই সরল দোল গতিতে আন্দোলিত হচ্ছে। সুতরাং উদ্ভূত তরঙ্গই লম্বিক তরঙ্গ।

১৭.৪ আড় তরঙ্গ ও লম্বিক তরঙ্গের মধ্যে পার্থক্য 

Distinction between transverse and longitudinal waves 

আড় তরঙ্গ ও লম্বিক তরঙ্গের মধ্যে নিম্নলিখিত পার্থক্য পরিলক্ষিত হয়।

আড় তরঙ্গলম্বিক তরঙ্গ
১। যে তরঙ্গের ক্ষেত্রে জড় মাধ্যমের কণাগুলির কম্পনের দিক তরঙ্গ প্রবাহের দিকের সমকোণী হয়,তাকে আড় তরঙ্গ বলে।১। যে তরঙ্গের ক্ষেত্রে জড় মাধ্যমের কণাগুলির কম্পনের দিক তরঙ্গ প্রবাহের দিকের সমান্তরাল হয় তাকে লম্বিক তরঙ্গ বলে।
২। তরঙ্গ প্রবাহে মাধ্যমে তরঙ্গ শীর্ষ এবং তরঙ্গ পাদ সৃষ্টি হয়।২। তরঙ্গ প্রবাহে মাধ্যমে সংকোচন ও প্রসারণ সৃষ্টি হয়।
৩। পর পর দুটি তরঙ্গ শীর্ষ বা পর পর দুটি তরঙ্গ পাদের মধ্যবর্তী দূরত্বকে তরঙ্গ দৈর্ঘ্য বলে।৩। পর পর দুটি সংকোচন বা পর পর দুটি প্রসারণের মধ্যবর্তী দূরত্বকে বা একটি প্রসারণ ও একটি সংকোচনের মিলিত দৈর্ঘ্যকে তরঙ্গ দৈর্ঘ্য বলে।
৪। মাধ্যমে এর সমবর্তন বা পোলারণ ঘটে।৪। মাধ্যমে এর সেমবর্তন বা পোলারণ ঘটে না
৫। অনম্যতার বা আকৃতির স্থিতিস্থাপক ধর্মসম্পন্ন মাধ্যমে (কঠিন) এই তরঙ্গ উৎপন্ন হয়। প্রবাহীতে পৃষ্ঠ টানের দরুন আড় তরঙ্গের সৃষ্টি হয়।৫। আয়তনের সিতিস্থাপক এইসম্পন্ন মধ্য (কঠিন, তরল ও গ্যাস।) এই তরঙ্গ উৎপন্ন হয়।

 

Content added || updated By

সোরগোল ও সংগীতগুন এবং এদের প্রভাব

239
239
Please, contribute by adding content to সোরগোল ও সংগীতগুন এবং এদের প্রভাব.
Content

তরঙ্গ সংক্রান্ত কয়েকটি সংজ্ঞা

1.4k
1.4k

১৭.৫ তরঙ্গ সংক্রান্ত কয়েকটি সংজ্ঞা 

Some definitions relating waves

তরঙ্গ সংক্রান্ত কয়েকটি রাশির সংজ্ঞা নিম্নে দেয়া হল : 

(১) পূর্ণ কম্পন (Complete oscillation) : কম্পমান বস্তু একটি বিন্দু হতে যাত্রা শুরু করে আবার একই দিক হতে সে বিন্দুতে ফিরে এলে একে পূর্ণ কম্পন বলে।

 

(খ) তরঙ্গ দৈর্ঘ্য (Wave length) : তরঙ্গ সৃষ্টিকারী কোন কম্পনশীল কণার একটি পূর্ণ কম্পন সম্পন্ন করতে যে সময় লাগে, ঐ সময়ে তরঙ্গ যে দূরত্ব অতিক্রম করে তাকে তরঙ্গদৈর্ঘ্য বলে। 

তরঙ্গের উপরিস্থিত পরপর দুটি সমদশাসম্পন্ন কণার ন্যূনতম দূরত্বই হল তরঙ্গ দৈর্ঘ্য। একে λ দ্বারা প্রকাশ করা হয়।

চিত্র :১৭.৭

 আড় তরঙ্গে ক্ষেত্রে পরপর দুটি তরঙ্গশীর্ষ বা পরপর দুটি তরঙ্গ পাদ-এর মধ্যবর্তী দূরত্বকে তরঙ্গদৈর্ঘ্য বলে। চিত্র ১৭.৭-এ AE বা BF বা CG আড় তরঙ্গের ক্ষেত্রে তরঙ্গ দৈর্ঘ্য এবং চিত্র ১৭.৪-এ RR‘ বা CC‘ লম্বিক তরঙ্গের ক্ষেত্রে তরঙ্গ দৈর্ঘ্য।

কোন একটি মাধ্যমে বিভিন্ন শব্দের তরঙ্গ দৈর্ঘ্য বিভিন্ন। একই শব্দের তরঙ্গ বিভিন্ন মাধ্যমেও বিভিন্ন।

(গ) কম্পাঙ্ক বা স্পন্দন সংখ্যা (Frequency) : কোন একটি কম্পমান বস্তু বা কণা এক সেকেণ্ডে যতগুলো পূর্ণ কম্পন সম্পন্ন করে তাকে তাঁর কম্পাঙ্ক বা স্পন্দন সংখ্যা বলে।

কম্পাঙ্ক η বা f দ্বারা প্রকাশ করা হয়।

কোন বস্তু বা কণা t সময়ে N সংখ্যক কম্পন সম্পন্ন করলে কম্পাঙ্ক, f বা n = Nt

কম্পাঙ্কের একককে হার্টজ (Hertz সংক্ষেপে Hz) বলে। অনেক সময় সাইকেল/সেকেণ্ড (cs-1) এককও ব্যবহার করা হয়।

(ঘ) দোলনকাল বা পর্যায়কাল (Time period) : কোন একটি কম্পমান বস্তু একটি পূর্ণ কম্পন সম্পন্ন করতে যে সময় নেয়, তাকে এর দোলনকাল বা পর্যায়কাল বলে। 

একে T দ্বারা প্রকাশ করা হয়। মনে করি t সেকেন্ডে একটি উৎস Nটি পূর্ণ কম্পন সম্পন্ন করে।

:- দোলন কাল, T=tN এবং কম্পাঙ্ক,  n=Nt

চিত্র ১৭.৭-এ তরঙ্গের B হতে F বা D হতে H-এ যেতে ব্যয়িত সময়ই পর্যায়কাল বা দোলনকাল। 

বিভিন্ন তরঙ্গের পর্যায়কাল বা কম্পাঙ্ক একই মাধ্যমে বিভিন্ন। কিন্তু একই তরঙ্গের কম্পাঙ্ক বা পর্যায়কাল বিভিন্ন মাধ্যমে সমান।

(ঙ) বিস্তার (Amplitude) : কোন একটি কম্পমান বস্তু তার সাম্যাবস্থান হতে ডানে বা বামে অথবা উপরে বা নিচে যে সর্বাধিক দূরত্ব অতিক্রম করে তাকে এর বিস্তার বলে।

  বিস্তার দুই প্রকার, যথা— (ক) রৈখিক বিস্তার, একে সাধারণত 'a' দ্বারা সূচিত করা হয় এবং 

(খ) কৌণিক বিস্তার; একে সাধারণত 'θ‘ দ্বারা সূচিত করা হয়। চিত্র ১৭.৭-এ BF হতে E বা C বা A-এর লম্ব দূরত্বই রৈখিক বিস্তার ’a'।

কোন শব্দের প্রাবল্য I বিস্তারের বর্গের সমানুপাতিক। অর্থাৎ [Ia2]

(চ) দশা (Phase) : দশা কোন একটি কম্পমান বস্তুর কোন মুহূর্তের দোলনের অবস্থা প্রকাশ করে।

আরও বিস্তারিতভাবে বলা যায়— তরঙ্গস্থিত কোন একটি কণার কোন মুহূর্তের অবস্থান এবং তার গতির অবস্থা ও দিক যার দ্বারা নির্দেশ করা হয় তাকে দশা বলে। 

(ছ) আদি দশা (Epoch) : কোন একটি কম্পমান বস্তু যে দশা নিয়ে কম্পন শুরু করে, তাকে আদি দশা বলে।

 

(জ) তরঙ্গ বেগ (Wave velocity) : কোন একটি তরঙ্গ কোন মাধ্যমে এক সেকেন্ডে যে দূরত্ব অতিক্রম করে তাকে সেই মাধ্যমে এর তরঙ্গ বেগ বলে। একে দ্বারা v' সূচিত করা হয়।

মাধ্যম ভেদে একই শব্দের বেগ বিভিন্ন। কিন্তু বিভিন্ন শব্দের বেগ একই মাধ্যমে সমান। 

(ঝ) তরঙ্গ মুখ (Wave front): কোন তরঙ্গের উপরিস্থিত সমদশাসম্পন্ন সব বিন্দুর মধ্য দিয়ে অঙ্কিত তলকে তরঙ্গ মুখ বলে। 

যেমন পানির তরঙ্গ শীর্ষে অবস্থিত সব কণার দশা একই। তেমনি এর তরঙ্গ

চিত্র :১৭.৮

পাদে অবস্থিত সব কণার দশাও একই। কাজেই তরঙ্গ শীর্ষ বরাবর অঙ্কিত তল হবে একটি তরঙ্গ মুখ এবং তরঙ্গ পাদ বরাবর অঙ্কিত তল হবে আর একটি তরঙ্গ মুখ। পরপর দুটি তরঙ্গ শীর্ষ বা তরঙ্গপাদ বরাবর অঙ্কিত তলের তরঙ্গ মুখের মধ্যবর্তী দূরত্ব এক তরঙ্গ দৈর্ঘ্য [চিত্র ১৭.৮]।

(ঞ) তরঙ্গ শীর্ষ (Crest) : আড় তরঙ্গের ক্ষেত্রে এর ধনদিকে এক তরঙ্গ দৈর্ঘ্যে সর্বাধিক সরণের বিন্দুকে তরঙ্গ শীর্ষ বলে [ চিত্র ১৭.৭-এ A ও E বিন্দু] |

 

(ট) তরঙ্গ পাদ (Trough) : আড় তরঙ্গের ক্ষেত্রে এর ঋণদিকে এক তরঙ্গ দৈর্ঘ্যে সর্বাধিক সরণের বিন্দুকে তরঙ্গ পাদ বলে | [চিত্র ১৭.৭-এ C বিন্দু ]।

(ঠ) তরঙ্গের তীব্রতা (Intensity of wave) : কোন তরঙ্গের সমকোণে একক ক্ষেত্রফলের  মধ্য দিয়ে এক সেকেন্ডে যে পরিমাণ শক্তি প্রবাহিত হয় তাকে ঐ তরঙ্গের তীব্রতা বলে। একে মাধ্যমের শক্তি প্রবাহও (energy current or energy flux) বলা হয়। একে দ্বারা সূচিত করা হয়।

তরঙ্গের তীব্রতা, I = শক্তি ঘনত্ব × তরঙ্গ বেগ

গাণিতিকভাবে দেখান যায় যে,

I=2ρπ2a2n2v

এখানে, 

ρ মাধ্যমের ঘনত্ব

n তরঙ্গের কম্পাঙ্ক

a তরঙ্গের বিস্তার এবং

v তরঙ্গের বেগ ।

উপরের সমীকরণ হতে দেখা যায় যে,

Ia2

= Ka², এখানে K ধ্রুবক।

অর্থাৎ তীব্রতা (I) বিস্তারের বর্গের সমানুপাতিক। 

এস. আই. পদ্ধতিতে তীব্রতার একক [Jm-1] বা Wm-2

 

Content added || updated By

তরঙ্গ বেগ, তরঙ্গ দৈর্ঘ্য এবং কম্পাঙ্কের মধ্যে সম্পর্ক

2.2k
2.2k

মনে করি, কোন মাধ্যমে কোন একটি তরঙ্গের বেগ = v, তরঙ্গ উৎসের কম্পাংক = n এবং তরঙ্গ দৈর্ঘ্য = λ। তাদের মধ্যে সম্পর্ক স্থাপন করতে হবে। যেহেতু v তরঙ্গ বেগ,

অতএব আমরা পাই,

v = তরঙ্গ কর্তৃক এক সেকেণ্ডের অতিক্রান্ত দূরত্ব     (1)

পুনঃ, তরঙ্গ দৈর্ঘ্য = λ, সুতরাং শব্দ উৎসের একটি পূর্ণ কম্পনে তরঙ্গ কর্তৃক অতিক্রান্ত দূরত্ব = λ

 কম্পাঙ্ক n হওয়ায় প্রতি সেকেন্ডে nটি পূর্ণ কম্পন সম্পন্ন হয়। অতএব n টি পূর্ণ কম্পনের জন্য অতিক্রান্ত দূরত্ব = nλ

 nλ= তরঙ্গ কর্তৃক এক সেকেণ্ডের অতিক্রান্ত দূরত্ব  (2)

সমীকরণ (1) এবং (2) হতে পাই,

v = nλ    (3)

অর্থাৎ তরঙ্গ'বেগ = কম্পাঙ্ক × তরঙ্গ দৈর্ঘ্য।

এটিই হল তরঙ্গ বেগ. কম্পাঙ্ক এবং তরঙ্গ দৈর্ঘ্যের মধ্যে সম্পর্ক।

১৭'৭ দোলনকাল এবং কম্পাঙ্কের মধ্যে সম্পর্ক

 Relation between time period and frequency

মনে করি কোন একটি কম্পমান বস্তুর দোলনকাল T এবং কম্পাঙ্ক n । এদের মধ্যে সম্পর্ক স্থাপন করতে হবে।

দোলনকাল T-এর অর্থ কম্পমান বস্তুর একটি পূর্ণ কম্পনে অতিবাহিত সময়। অতএব nটি পূর্ণ কম্পনে অতিবাহিত সময় =nT

NT = nটি পূর্ণ কম্পনে ব্যয়িত সময়   (4) 

আবার কম্পাঙ্ক শব্দের অর্থ—এক সেকেণ্ডের পূর্ণ কম্পন সংখ্যা।

কাজেই nটি পূর্ণ কম্পুন দিতে সময় লাগবে 1 সেকেণ্ড।

1 সে. = nটি পূর্ণ কম্পনে ব্যয়িত সময়  (5)

সমীকরণ (4) এবং (5) হতে পাই

nT=1

বা, T=1n

বা, n=1T

এটিই হল দোলনকাল ও কম্পাঙ্কের মধ্যে সম্পর্ক।

 

Content added || updated By

অগ্রগামী তরঙ্গ

882
882

যে তরঙ্গ উৎস হতে উৎপন্ন হয়ে সময়ের সাথে সাথে অগ্রসরমান বা চলমান হয় তাকে অগ্রগামী তরঙ্গ বলে। অগ্রগামী তরঙ্গ আড় বা অনুদৈর্ঘ্য এবং লম্বিক বা অনুপ্রস্থ উভয় ধরনের হতে পারে। আবার দুটি বিপরীতমুখী তরঙ্গের উপরিপাতের ফলে উৎপন্ন তরঙ্গ মাধ্যমের একটি সীমিত অংশে আবদ্ধ থাকে। এই তরঙ্গকে স্থির তরঙ্গ বলে।

অগ্রগামী তরঙ্গের সংজ্ঞাঃ কোন তরঙ্গ যদি কোন বিস্তৃত মাধ্যমের এক স্তর হতে অন্য স্তরে সঞ্চালিত হয়ে ক্রমাগত সম্মুখের দিকে অগ্রসর হতে থাকে, তবে তাকে অগ্রগামী বা চলমান তরঙ্গ বলে । 

উদাহরণ : (ক) পুকুরের পানিতে ঢিল ছুঁড়লে আড় তরঙ্গ সৃষ্টি হয়। এই ঢেউ বা তরঙ্গ পানির মধ্য দিয়ে কিনারার দিকে ক্রমাগত অগ্রসর হতে থাকে। সুতরাং পানির ঢেউ অগ্রগামী আড় বা অনুপ্রস্থ তরঙ্গ। 

(খ) বক্তা কথা বললে শব্দ উৎপন্ন হয়। শব্দ লম্বিক বা অনুদৈর্ঘ্য তরঙ্গ। এই শব্দ বক্তার মুখ হতে বাতাসের মধ্য দিয়ে ক্রমাগত সম্মুখের দিকে অগ্রসর হয়ে শ্রোতার কানে পৌঁছায়। অতএব শব্দ অগ্রগামী লম্বিক তরঙ্গ।

অগ্রগামী তরঙ্গের বৈশিষ্ট্য : অগ্রগামী তরঙ্গের নিম্নলিখিত বৈশিষ্ট্য পরিলক্ষিত হয়, যথা—

(ক)কোন মাধ্যমের একই প্রকার কম্পনে এই তরঙ্গের উৎপত্তি হয়।

(খ) এটি একটি সুষম মাধ্যমের মধ্য দিয়ে একটি নির্দিষ্ট দ্রুতি বা বেগে প্রবাহিত হয়।

(গ) অগ্রগামী তরঙ্গের বেগ মাধ্যমের ঘনত্ব ও স্থিতিস্থাপকতার উপর নির্ভর করে।

(ঘ) মাধ্যমের কণাগুলোর কম্পন তরঙ্গ প্রবাহের সাপেক্ষে আড় ও লম্বিক হতে পারে। 

(ঙ) মাধ্যমের কণাগুলো কখনও স্থির থাকে না।

(চ) তরঙ্গ মুখের অভিলম্ব বরাবর শক্তি বহন করে এ তরঙ্গ প্রবাহিত হয়। 

(ছ) তরঙ্গ প্রবাহে মাধ্যমের বিভিন্ন অংশের চাপ ও ঘনত্বের একই প্রকার পরিবর্তন ঘটে।

(জ) মাধ্যমের  প্রতিটি কণার কম্পাঙ্ক ও বিস্তার একই হয় এবং তারা একই ধরনের কম্পনে কম্পিত হয়।

(ঝ) তরঙ্গ প্রবাহের দরুন মাধ্যমের কণার দশা পরবর্তী কণাতে স্থানান্তরিত হয়। এরূপ দুটি কণার দশা বৈষম্য তাদের দূরত্বের সমানুপাতিক। 

(ঞ) মাধ্যমের যে কোন কণার বিভিন্ন ধর্ম—যেমন বেগ, ত্বরণ, শক্তি প্রভৃতি একইরূপ পরিবর্তনের মধ্য দিয়ে যায়।

 

১৭.৯ অগ্রগামী তরঙ্গের সমীকরণ

Equation of progressive wave

কোন মাধমের কণাগুলো সরল ছন্দিত স্পন্দনে স্পন্দিত বা আন্দোলিত হলে অগ্রগামী তরঙ্গের সৃষ্টি হয় এবং মাধ্যমের এক কণা হতে পরবর্তী কণায় আন্দোলন স্থানান্তরিত হয়। সুতরাং স্বাভাবিকভাবেই এক কণা 'হতে পরবর্তী কণায় আন্দোলন পৌঁছতে একটি নির্দিষ্ট সময় লাগে। ফলে তরঙ্গের অভিমুখ বরাবর কণাগুলোর দশার পরিবর্তন ঘটে। এখন তরঙ্গ যদি বামদিক থেকে ডানদিকে অগ্রসর হতে থাকে তবে বামদিকের কণা আন্দোলিত হওয়ার একটি নির্দিষ্ট সময় পরে ডানদিকের কণা আন্দোলিত হবে; ফলে এদের মধ্যে দশার পার্থক্য সৃষ্টি হবে। এভাবে ডানদিকের পরের কণাগুলো পরে আন্দোলিত হবে। সুতরাং প্রথম কণার সঙ্গে দূরবর্তী কণার দশা পার্থক্য বৃদ্ধি পেতে থাকবে। তবে প্রতি দুটি পার্শ্ববর্তী কণার দশা পার্থক্য একই হবে। এখন এই অগ্রগামী তরঙ্গের গাণিতিক সমীকরণ বের করব।

    মনে করি একটি অগ্রগামী তরঙ্গ X-অক্ষের ধনাত্মক দিকে অগ্রসর হচ্ছে। চিত্র ১৭.৯]। ধরি  t সময়ে মাধ্যমের কোন একটি কণা O-এর সরণ = y (লম্বিক তরঙ্গের ক্ষেত্রে কণার সরণ X-অক্ষ বরাবর এবং আড় তরঙ্গের ক্ষেত্রে কণার সরণ Y-অক্ষ বরাবর ঘটে। যেহেতু মাধ্যমের কণাগুলো সরল ছন্দিত স্পন্দনে আন্দোলিত হচ্ছে, কাজেই O- কণাটির গতির সমীকরণ হবে,

y= A sin ωt

এখানে, A = কণার বিস্তার

ω কণার কৌণিক কম্পাঙ্ক = 2πn=2πT    (7)

এবং ωt = কণার দশা কোণ, সংক্ষেপে দশা।

এখন, যদিও মাধ্যমের প্রতিটি কণার গতি অভিন্ন, কিন্তু কণাগুলোর দশা এক নয়।

চিত্র :১৭.৯

ধরা যাক, O বিন্দু কণার এ গতি ডানদিকের কণাগুলোতে একের পর এক সঞ্চালিত হচ্ছে। এর অর্থ হল O-এর পরবর্তী কণা কিছু সময় পরে O কণার দশাপ্রাপ্ত হবে। . তারপরের কণা আরও একটু পরে O-কণার দশাপ্রাপ্ত হবে। ফলে O বিন্দু থেকে ডানদিকের কণাগুলোর দূরত্ব বাড়ার সঙ্গে দশা পার্থক্যও বাড়বে। এক্ষেত্রে তরঙ্গের গতিপথের উপর অবস্থিত প্রতিটি কণার দশা এর পূর্ববর্তী রাম দিকের কণার দশার পশ্চাদগামী (Lagging) হবে।

           আমরা জানি একটি পূর্ণ কম্পনে তরঙ্গ যে পরিমাণ দূরত্ব অতিক্রম করে তাকে তরঙ্গ দৈর্ঘ্য (λ) বলে এবং এই সময় দশা পার্থক্য হয় 2π। এখন O বিন্দু হতে x দূরত্বে অবস্থিত P বিন্দুর কণা বিবেচনা করি। ধরি O বিন্দুর কণার সাথে এর দশা পার্থক্য δ। সেহেতু λ দূরত্ব অতিক্রমকালে দশা পরিবর্তন বা দশা পার্থক্য হয় 2π; সুতরাং x দূরত্বের জন্য দশা পার্থক্য হবে, δ=2πλx

অর্থাৎ, দশা পার্থক্য = 2πλ× পথ পার্থক্য

P বিন্দুর কণার গতির সমীকরণ হবে

=Asin2πλ(vt-x)  (9)

যদি তরঙ্গ X-অক্ষের ঋণাত্মক দিকে অগ্রসর হয়, তবে গতির সমীকরণ হবে,

Error parsing MathML: error on line 1989 at column 61: Namespace prefix x-on for click on div is not defined